当前位置: 首页 > news >正文

七、模型评估指标

当训练好模型之后,检测模型训练效果如何,评价指标有哪些?通过查阅相关资料,我将以这五个指标来对所训练的模型进行评估,下图是评价指标运行结果图。

在这里插入图片描述

一、混淆矩阵(Confusion Matrix)

解释:也就是个n维矩阵,n表示分类的类别数。
具体的表示如下(这里以二分类任务为例):也就是图中的二维矩阵
在这里插入图片描述在这里插入图片描述
上述的所有指标都是建立在混淆矩阵的基础上进行计算的
我这里以织物毛球和纹理进行识别,毛球为Positive,纹理为Negative
这个二维矩阵有四个参数:

参数解释
True Positive模型预测识别为Positive,识别正确True;实际为Positive
False Negative模型预测识别为Negative,识别错误False;实际为Positive
False Positive模型预测识别为Positive,识别错误False;实际为Negative
True Negative模型预测识别为Negative,识别正确True;实际为Negative

这些值对测试图像中所有像素点进行分类统计

代码实现:

修改:SegmentationMetric(2)改成实际训练模型的分类数,我这个模型训练的是二分类任务
imgPredictimgLabel 改成自己模型预测的图像和标签图像的路径
实际上,imgLabel为正确答案,依次遍历imgPredict中像素点,与正确答案进行对比,统计上述参数的个数,最后绘制成混淆矩阵。

import numpy as np
import cv2class SegmentationMetric(object):def __init__(self, numClass):self.numClass = numClassself.confusionMatrix = np.zeros((self.numClass,) * 2)  # 混淆矩阵(空)def addBatch(self, imgPredict, imgLabel):assert imgPredict.shape == imgLabel.shapeself.confusionMatrix += self.genConfusionMatrix(imgPredict, imgLabel)  # 得到混淆矩阵return self.confusionMatrixdef genConfusionMatrix(self, imgPredict, imgLabel): mask = (imgLabel >= 0) & (imgLabel < self.numClass)label = self.numClass * imgLabel[mask] + imgPredict[mask]count = np.bincount(label, minlength=self.numClass ** 2)confusionMatrix = count.reshape(self.numClass, self.numClass)return confusionMatrix# 测试内容
if __name__ == '__main__':imgPredict = cv2.imread("../result/qqq.png")= cv2.imread("../result/img.jpg")imgPredict = np.array(cv2.cvtColor(imgPredict, cv2.COLOR_BGR2GRAY) / 255., dtype=np.uint8)imgLabel = np.array(cv2.cvtColor(imgLabel, cv2.COLOR_BGR2GRAY) / 255., dtype=np.uint8)metric = SegmentationMetric(2)  # 2表示有2个分类ConfusionMatrix = metric.addBatch(imgPredict, imgLabel)print('ConfusionMatrix is :\n', ConfusionMatrix)

运行结果如下:在这里插入图片描述

二、像素准确率PA(Pixel Accuracy)

PA最后的输出是一个数值,因为是,无论多少类别的分类,都是跟标准标签进行对比,一致就是True,不一致就是False

PA,别的论文也称为准确率、Acc等,都指的是像素准确率
Accuracy = (TP + TN) / (TP + TN + FP + FN),也就是对角线元素之和/总的元素之和
(99586+1150)/(99586+1108+556+1150)= 0.983750,这也对应了第一张图的显示结果

代码实现:

import numpy as np
import cv2class SegmentationMetric(object):def __init__(self, numClass):self.numClass = numClassself.confusionMatrix = np.zeros((self.numClass,) * 2)  # 混淆矩阵(空)def addBatch(self, imgPredict, imgLabel):assert imgPredict.shape == imgLabel.shapeself.confusionMatrix += self.genConfusionMatrix(imgPredict, imgLabel)  # 得到混淆矩阵return self.confusionMatrixdef genConfusionMatrix(self, imgPredict, imgLabel):mask = (imgLabel >= 0) & (imgLabel < self.numClass)label = self.numClass * imgLabel[mask] + imgPredict[mask]count = np.bincount(label, minlength=self.numClass ** 2)confusionMatrix = count.reshape(self.numClass, self.numClass)return confusionMatrixdef pixelAccuracy(self):acc = np.diag(self.confusionMatrix).sum() / self.confusionMatrix.sum()return acc# 测试内容
if __name__ == '__main__':imgPredict = cv2.imread("../result/qqq.png")imgLabel = cv2.imread("../result/img.jpg")imgPredict = np.array(cv2.cvtColor(imgPredict, cv2.COLOR_BGR2GRAY) / 255., dtype=np.uint8)imgLabel = np.array(cv2.cvtColor(imgLabel, cv2.COLOR_BGR2GRAY) / 255., dtype=np.uint8)metric = SegmentationMetric(2)  # 2表示有2个分类ConfusionMatrix = metric.addBatch(imgPredict, imgLabel)PixelAccuracy = metric.pixelAccuracy()print('PixelAccuracy is :\n', PixelAccuracy)

运行结果如下:
在这里插入图片描述

三、类别像素准确率CPA(Class Pixel Accuracy)

CPA与PA不同,PA是将整体区分True和False最后结果是一个数值
CPA则先将不同的类别进行划分,每个类别再分别与标签给定的正确答案进行对比统计,最后的个数是类别个数,有几个类别就是几个数值。

代码实现:

import numpy as np
import cv2class SegmentationMetric(object):def __init__(self, numClass):self.numClass = numClassself.confusionMatrix = np.zeros((self.numClass,) * 2)  # 混淆矩阵(空)def addBatch(self, imgPredict, imgLabel):assert imgPredict.shape == imgLabel.shapeself.confusionMatrix += self.genConfusionMatrix(imgPredict, imgLabel)  # 得到混淆矩阵return self.confusionMatrixdef genConfusionMatrix(self, imgPredict, imgLabel):mask = (imgLabel >= 0) & (imgLabel < self.numClass)label = self.numClass * imgLabel[mask] + imgPredict[mask]count = np.bincount(label, minlength=self.numClass ** 2)confusionMatrix = count.reshape(self.numClass, self.numClass)return confusionMatrixdef classPixelAccuracy(self):classAcc = np.diag(self.confusionMatrix) / self.confusionMatrix.sum(axis=1)return classAcc  # 返回的是一个列表值,如:[0.90, 0.80, 0.96],表示类别1 2 3各类别的预测准确率# 测试内容
if __name__ == '__main__':imgPredict = cv2.imread("../result/qqq.png")imgLabel = cv2.imread("../result/img.jpg")imgPredict = np.array(cv2.cvtColor(imgPredict, cv2.COLOR_BGR2GRAY) / 255., dtype=np.uint8)imgLabel = np.array(cv2.cvtColor(imgLabel, cv2.COLOR_BGR2GRAY) / 255., dtype=np.uint8)metric = SegmentationMetric(2)  # 2表示有2个分类ConfusionMatrix = metric.addBatch(imgPredict, imgLabel)cpa = metric.classPixelAccuracy()print('classPixelAccuracy is :\n', cpa)

因为是二分类任务,故分别显示这两个类别的PA值
运行效果如下:
在这里插入图片描述

四、类别平均像素准确率MPA(Mean class Pixel Accuracy)

也就是将所有的CPA加一块,求个平均值

代码实现:

import numpy as np
import cv2class SegmentationMetric(object):def __init__(self, numClass):self.numClass = numClassself.confusionMatrix = np.zeros((self.numClass,) * 2)  # 混淆矩阵(空)def addBatch(self, imgPredict, imgLabel):assert imgPredict.shape == imgLabel.shapeself.confusionMatrix += self.genConfusionMatrix(imgPredict, imgLabel)  # 得到混淆矩阵return self.confusionMatrixdef genConfusionMatrix(self, imgPredict, imgLabel):mask = (imgLabel >= 0) & (imgLabel < self.numClass)label = self.numClass * imgLabel[mask] + imgPredict[mask]count = np.bincount(label, minlength=self.numClass ** 2)confusionMatrix = count.reshape(self.numClass, self.numClass)return confusionMatrixdef classPixelAccuracy(self):classAcc = np.diag(self.confusionMatrix) / self.confusionMatrix.sum(axis=1)return classAcc  # 返回的是一个列表值,如:[0.90, 0.80, 0.96],表示类别1 2 3各类别的预测准确率def meanPixelAccuracy(self):classAcc = self.classPixelAccuracy()meanAcc = np.nanmean(classAcc)  # np.nanmean 求平均值,nan表示遇到Nan类型,其值取为0return meanAcc  # 返回单个值,如:np.nanmean([0.90, 0.80, 0.96, nan, nan]) = (0.90 + 0.80 + 0.96) / 3 =  0.89# 测试内容
if __name__ == '__main__':imgPredict = cv2.imread("../result/qqq.png")imgLabel = cv2.imread("../result/img.jpg")imgPredict = np.array(cv2.cvtColor(imgPredict, cv2.COLOR_BGR2GRAY) / 255., dtype=np.uint8)imgLabel = np.array(cv2.cvtColor(imgLabel, cv2.COLOR_BGR2GRAY) / 255., dtype=np.uint8)metric = SegmentationMetric(2)  # 2表示有2个分类ConfusionMatrix = metric.addBatch(imgPredict, imgLabel)mpa = metric.meanPixelAccuracy()print('meanPixelAccuracy is :\n', mpa)

(0.98899637+0.67409144)/ 2 = 0.831543905
运行结果如下:
在这里插入图片描述

五、交并比IoU(Intersection Over Union)

通俗来说:将标签图像和模型预测出的图像重叠一下,分别取交集和并集,这里的交集和并集取得是统计像素点的个数
IoU是按不同类别分别进行求解的,几个类别就有几个IoU
IoU = 交集 / 并集
在这里插入图片描述

代码实现:

import numpy as np
import cv2class SegmentationMetric(object):def __init__(self, numClass):self.numClass = numClassself.confusionMatrix = np.zeros((self.numClass,) * 2)  # 混淆矩阵(空)def addBatch(self, imgPredict, imgLabel):assert imgPredict.shape == imgLabel.shapeself.confusionMatrix += self.genConfusionMatrix(imgPredict, imgLabel)  # 得到混淆矩阵return self.confusionMatrixdef genConfusionMatrix(self, imgPredict, imgLabel):mask = (imgLabel >= 0) & (imgLabel < self.numClass)label = self.numClass * imgLabel[mask] + imgPredict[mask]count = np.bincount(label, minlength=self.numClass ** 2)confusionMatrix = count.reshape(self.numClass, self.numClass)return confusionMatrixdef pixelAccuracy(self):acc = np.diag(self.confusionMatrix).sum() / self.confusionMatrix.sum()return accdef IntersectionOverUnion(self):# Intersection = TP Union = TP + FP + FN# IoU = TP / (TP + FP + FN)intersection = np.diag(self.confusionMatrix)  # 取对角元素的值,返回列表union = np.sum(self.confusionMatrix, axis=1) + np.sum(self.confusionMatrix, axis=0) - np.diag(self.confusionMatrix)  # axis = 1表示混淆矩阵行的值,返回列表; axis = 0表示取混淆矩阵列的值,返回列表IoU = intersection / union  # 返回列表,其值为各个类别的IoUreturn IoU
# 测试内容
if __name__ == '__main__':imgPredict = cv2.imread("../result/qqq.png")imgLabel = cv2.imread("../result/img.jpg")imgPredict = np.array(cv2.cvtColor(imgPredict, cv2.COLOR_BGR2GRAY) / 255., dtype=np.uint8)imgLabel = np.array(cv2.cvtColor(imgLabel, cv2.COLOR_BGR2GRAY) / 255., dtype=np.uint8)metric = SegmentationMetric(2)  # 2表示有2个分类ConfusionMatrix = metric.addBatch(imgPredict, imgLabel)IoU = metric.IntersectionOverUnion()print('IntersectionOverUnion is :\n', IoU)

效果图如下:
在这里插入图片描述

六、平均交并比MIoU(Mean Intersection Over Union)

将不同类别的IoU求个平均数

代码实现:

import numpy as np
import cv2class SegmentationMetric(object):def __init__(self, numClass):self.numClass = numClassself.confusionMatrix = np.zeros((self.numClass,) * 2)  # 混淆矩阵(空)def addBatch(self, imgPredict, imgLabel):assert imgPredict.shape == imgLabel.shapeself.confusionMatrix += self.genConfusionMatrix(imgPredict, imgLabel)  # 得到混淆矩阵return self.confusionMatrixdef genConfusionMatrix(self, imgPredict, imgLabel):mask = (imgLabel >= 0) & (imgLabel < self.numClass)label = self.numClass * imgLabel[mask] + imgPredict[mask]count = np.bincount(label, minlength=self.numClass ** 2)confusionMatrix = count.reshape(self.numClass, self.numClass)return confusionMatrixdef pixelAccuracy(self):acc = np.diag(self.confusionMatrix).sum() / self.confusionMatrix.sum()return accdef IntersectionOverUnion(self):# Intersection = TP Union = TP + FP + FN# IoU = TP / (TP + FP + FN)intersection = np.diag(self.confusionMatrix)  # 取对角元素的值,返回列表union = np.sum(self.confusionMatrix, axis=1) + np.sum(self.confusionMatrix, axis=0) - np.diag(self.confusionMatrix)  # axis = 1表示混淆矩阵行的值,返回列表; axis = 0表示取混淆矩阵列的值,返回列表IoU = intersection / union  # 返回列表,其值为各个类别的IoUreturn IoUdef meanIntersectionOverUnion(self):mIoU = np.nanmean(self.IntersectionOverUnion())  # 求各类别IoU的平均return mIoU
# 测试内容
if __name__ == '__main__':imgPredict = cv2.imread("../result/qqq.png")imgLabel = cv2.imread("../result/img.jpg")imgPredict = np.array(cv2.cvtColor(imgPredict, cv2.COLOR_BGR2GRAY) / 255., dtype=np.uint8)imgLabel = np.array(cv2.cvtColor(imgLabel, cv2.COLOR_BGR2GRAY) / 255., dtype=np.uint8)metric = SegmentationMetric(2)  # 2表示有2个分类ConfusionMatrix = metric.addBatch(imgPredict, imgLabel)mIoU = metric.meanIntersectionOverUnion()print('meanIntersectionOverUnion is :\n', mIoU)

运行结果如下:
在这里插入图片描述

七、完整代码

import numpy as np
import cv2__all__ = ['SegmentationMetric']"""
confusionMetric  # 注意:此处横着代表预测值,竖着代表真实值
P\L     P    N
P      TP    FP
N      FN    TN
"""class SegmentationMetric(object):def __init__(self, numClass):self.numClass = numClassself.confusionMatrix = np.zeros((self.numClass,) * 2)  # 混淆矩阵(空)def pixelAccuracy(self):# return all class overall pixel accuracy 正确的像素占总像素的比例#  PA = acc = (TP + TN) / (TP + TN + FP + TN)acc = np.diag(self.confusionMatrix).sum() / self.confusionMatrix.sum()return accdef classPixelAccuracy(self):# return each category pixel accuracy(A more accurate way to call it precision)# acc = (TP) / TP + FPclassAcc = np.diag(self.confusionMatrix) / self.confusionMatrix.sum(axis=1)return classAcc  # 返回的是一个列表值,如:[0.90, 0.80, 0.96],表示类别1 2 3各类别的预测准确率def meanPixelAccuracy(self):"""Mean Pixel Accuracy(MPA,均像素精度):是PA的一种简单提升,计算每个类内被正确分类像素数的比例,之后求所有类的平均。:return:"""classAcc = self.classPixelAccuracy()meanAcc = np.nanmean(classAcc)  # np.nanmean 求平均值,nan表示遇到Nan类型,其值取为0return meanAcc  # 返回单个值,如:np.nanmean([0.90, 0.80, 0.96, nan, nan]) = (0.90 + 0.80 + 0.96) / 3 =  0.89def IntersectionOverUnion(self):# Intersection = TP Union = TP + FP + FN# IoU = TP / (TP + FP + FN)intersection = np.diag(self.confusionMatrix)  # 取对角元素的值,返回列表union = np.sum(self.confusionMatrix, axis=1) + np.sum(self.confusionMatrix, axis=0) - np.diag(self.confusionMatrix)  # axis = 1表示混淆矩阵行的值,返回列表; axis = 0表示取混淆矩阵列的值,返回列表IoU = intersection / union  # 返回列表,其值为各个类别的IoUreturn IoUdef meanIntersectionOverUnion(self):mIoU = np.nanmean(self.IntersectionOverUnion())  # 求各类别IoU的平均return mIoUdef genConfusionMatrix(self, imgPredict, imgLabel):  #"""同FCN中score.py的fast_hist()函数,计算混淆矩阵:param imgPredict::param imgLabel::return: 混淆矩阵"""# remove classes from unlabeled pixels in gt image and predictmask = (imgLabel >= 0) & (imgLabel < self.numClass)label = self.numClass * imgLabel[mask] + imgPredict[mask]count = np.bincount(label, minlength=self.numClass ** 2)confusionMatrix = count.reshape(self.numClass, self.numClass)# print(confusionMatrix)return confusionMatrixdef Frequency_Weighted_Intersection_over_Union(self):"""FWIoU,频权交并比:为MIoU的一种提升,这种方法根据每个类出现的频率为其设置权重。FWIOU =     [(TP+FN)/(TP+FP+TN+FN)] *[TP / (TP + FP + FN)]"""freq = np.sum(self.confusion_matrix, axis=1) / np.sum(self.confusion_matrix)iu = np.diag(self.confusion_matrix) / (np.sum(self.confusion_matrix, axis=1) + np.sum(self.confusion_matrix, axis=0) -np.diag(self.confusion_matrix))FWIoU = (freq[freq > 0] * iu[freq > 0]).sum()return FWIoUdef addBatch(self, imgPredict, imgLabel):assert imgPredict.shape == imgLabel.shapeself.confusionMatrix += self.genConfusionMatrix(imgPredict, imgLabel)  # 得到混淆矩阵return self.confusionMatrixdef reset(self):self.confusionMatrix = np.zeros((self.numClass, self.numClass))# 测试内容
if __name__ == '__main__':imgPredict = cv2.imread("../result/qqq.png")imgLabel = cv2.imread("../result/img.jpg")#"../result/standard/mask/SM50GRADE1PLAIN(1).jpg"#"../result/predict/image/SM50GRADE1BLANKET(1).jpg"imgPredict = np.array(cv2.cvtColor(imgPredict, cv2.COLOR_BGR2GRAY) / 255., dtype=np.uint8)imgLabel = np.array(cv2.cvtColor(imgLabel, cv2.COLOR_BGR2GRAY) / 255., dtype=np.uint8)# imgPredict = np.array([0, 0, 1, 1, 2, 2])  # 可直接换成预测图片# imgLabel = np.array([0, 0, 1, 1, 2, 2])  # 可直接换成标注图片metric = SegmentationMetric(2)  # 2表示有2个分类,有几个分类就填几ConfusionMatrix = metric.addBatch(imgPredict, imgLabel)pa = metric.pixelAccuracy()cpa = metric.classPixelAccuracy()mpa = metric.meanPixelAccuracy()IoU = metric.IntersectionOverUnion()mIoU = metric.meanIntersectionOverUnion()print('ConfusionMatrix is :\n', ConfusionMatrix)print('PA is : %f' % pa)print('cPA is :', cpa)print('mPA is : %f' % mpa)print('IoU is : ', IoU)print('mIoU is : ', mIoU)

效果图如下:
在这里插入图片描述

原文地址:https://blog.csdn.net/qq_41264055/article/details/128000668

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请将相关资料发送至 809451989@qq.com 进行投诉反馈,一经查实,立即处理!

相关文章:

  • 【机器学习】模型评估
  • 关于模型的评估指标(超详细)
  • margin失效问题——嵌套块元素引起的外边距坍塌
  • 页面布局高度塌陷问题和解决方案
  • 移动端开发rem实现屏幕适配及处理页面加载页面坍塌样式错乱网页闪烁问题
  • 实现边坍塌的网格简化方法
  • 盒子模型塌陷解决办法
  • LAMMPS模拟in和data文件集合
  • GAN_1——基础知识
  • [GAN学习笔记] 基础GAN(三)——WGAN
  • css防止高度塌陷,css之高度塌陷及其解决方法
  • 计算机图形学笔记十:Geometry3(网格处理)
  • 怎么样上台演讲(结合ppt)。。超级实用。。。
  • 商务流程
  • 业务范围(business area)
  • 国内外知名云服务公司介绍
  • 什么是企业管理咨询服务?
  • MiL.k x Bithumb x Yanolja宣布建立三方商务及市场营销合作关系
  • 移动商务,还是短信商务?
  • 什么样的人适合做外贸?能做好外贸?(非外贸零售)